N-41 Intro to Kinetics, Rate Expressions, and Average Rate

Target: I can describe factors that change the speed of a reaction, and can do calculations to find the average rate of a reaction.

Link to YouTube Presentation: https://youtu.be/sihC6aDsy3s

Thermo vs. Kinetics

<u>Thermo</u>

Energy (heat)

Q: is there enough energy for a reaction to happen? Is it GOING to happen?

YES

NO

Kinetics Speed Q: Assuming the reaction does happen - How FAST is the reaction going to happen?

FAST SLOW

SLOW *F* DOESN'T HAPPEN

This is where THERMO turns into KINETICS

This is where **THERMO** turns into **KINETICS**

Collision theory

Reactants must collide in order to react

Activation energy

Minimum amount of energy colliding particles need in order to react.

EFFECTIVE Collisions have to be...

Fast Enough AND Correct Orientation

Factors of Reaction Rate

- 1. Temperature
- 2. Concentration/Pressure
- 3. Surface area
- 4. Catalysts

(Typically) Increase any of these, you get more effective collisions... so it goes faster!

Maxwell-Boltzmann Distribution for Δ **Temp**

<u>Catalysts</u>

What is it?

- A chemical that you add to rxn
- Does NOT get used up during reaction

- Helps orient molecules to reach transition state easier <u>OR</u> provides an alternate pathway/mechanism/set of steps for it to occur
 - So you do not need as much energy
 - Lowers Activation Energy
 - = faster reaction BECAUSE more molecules will have the needed energy to get over Ea
- You don't get "more" collisions you just get more collisions that will be EFFECTIVE!

Maxwell-Boltzman Distribution for Catalyst

Reaction path

Reaction Mechanism

 A normal balanced chemical equation does not tell us <u>HOW</u> reactants become products; just a summary of the overall process.

- The reaction mechanism is the series of steps by which a chemical reaction occurs.
- Some reactions take place in one step, two steps, three steps etc.

Reaction Mechanism

 A normal balanced chemical equation does not tell us <u>HOW</u> reactants become products; just a summary of the overall process.

- The reaction mechanism is the series of steps by which a chemical reaction occurs.
- Some reactions take place in one step, two steps, three steps etc.

Rate Determining Step

In a multi-step reaction, the <u>slowest</u> step is the ratedetermining step. It determines the rate of reaction.

Can only go as fast as your slowest step!

Where	Units		Equation	Issue
Car	<u>Miles</u> Hour		$\Delta \overline{\Delta Distance}$ $\Delta Time$	SPEED
Kinetics	<u>Molarity</u> second	<u> </u>	$\frac{\Delta \text{ Concentration}}{\Delta \text{ Time}}$	SPEED

Using up reactants = decrease in # molecules = NEGATIVE rate Making more products = increase in # molecules = POSTIVE rate

Time

Concentration

Reaction Rates

- 1) Can measure disappearance of reactants (NO₂)
- 2) Can measure appearance of products (NO and O₂)

3) Are proportional stoichiometrically

Have to take coefficients into account! We make twice as much NO as O_2 ever second

- Rate is not always constant!
- Can start fast and slow down, or start slow and speed up
- Sometimes it is sufficient to just calculate the <u>average</u> <u>rate</u> over a given time period

Average Rate =
$$\frac{\Delta[X]}{\Delta t} = \frac{[X]_{final} - [X]_{initial}}{t_{final} - t_{initial}}$$

Average Rate

In an experiment, the concentration of substance D was measured at different times. **Determine the average rate between** <u>0.0 and 7.0 sec</u>.

Time , (s)	[D] <i>,</i> (M)
0	0.500
3.0	0.370
7.0	0.290

- Rate = (0.290-0.500)(7.0 - 0.0)
- Rate = -0.0300 M/s
- Is "D" a reactant or a product?
- Reactant! Rate is negative!

<u>Weird thing...</u> Sometimes we will say "What is the rate of disappearance" and then we don't have to write the negative sign! We like that sometimes because of math reasons. Example: The rate of disappearance is 0.0300 M/s

Average Rate

In an experiment, the concentration of substance D was measured at different times. **Determine the average rate between** <u>3.0 and 7.0 sec</u>.

Time , (s)	[D],(M)
0	0.500
3.0	0.370
7.0	0.290

• Rate =
$$(0.290 - 0.370)$$

(7.0 - 3.0)

- Rate = -0.0200 M/s
- Is "D" a reactant or a product?
- Reactant! Rate is negative!

See! Rate is not constant over the course of the reaction! That is why "average rate" is not always very helpful.

Pause here!

WS #3 – Q's #1-16 can be done at this point

Reaction Rates and Stoichiometry

$C_4H_9CI + H_2O \rightarrow C_4H_9OH + HCI$

- Ratio of C₄H₉Cl to C₄H₉OH is 1:1. For every mole of C₄H₉Cl lost, there was a mole of C₄H₉OH created.
- Thus, the rate of *disappearance* of C₄H₉Cl is the <u>same</u> as the rate of <u>appearance</u> of C₄H₉OH. They are directly related.

Rate =
$$\frac{-\Delta [C_4 H_9 CI]}{\Delta t} = \frac{\Delta [C_4 H_9 OH]}{\Delta t}$$

But...what if NOT a 1:1 ratio?! $H_2 + I_2 \rightarrow 2 HI$

- For every 1 mole of H₂ that reacts, <u>**2** moles</u> of HI are made!
- The rate of *disappearance* of H₂ is <u>HALF</u> the rate of *appearance* of HI.
- Want to set them equal to each other? Divide the HI expression by 2
- Always divide by your coefficients, don't multiply! Rate = $\frac{-\Delta[H_2]}{\Delta t} = \frac{1}{2} \frac{\Delta[H]}{\Delta t}$
- Remember! Reactants are negative!

Reaction Rates and Stoichiometry $N_2 + 3 H_2 \rightarrow 2 NH_3$

"Rate of Reaction" =
$$-\Delta[N_2] = -1\Delta[H_2] = 1\Delta[NH_3]$$

 $\Delta t = 3\Delta t = 2\Delta t$

Entire thing is the RATE EXPRESSION

REMEMBER!

Reactants are negative, Products are positive. Your double negatives will work themselves out so the REACTION rate comes out positive. Its all semantics in kinetics!

 $aA + bB \longrightarrow cC + dD$ $rate = -\frac{1}{a} \frac{\Delta [A]}{\Delta t} = -\frac{1}{b} \frac{\Delta [B]}{\Delta t} = \frac{1}{c} \frac{\Delta [C]}{\Delta t} = \frac{1}{d} \frac{\Delta [D]}{\Delta t}$

Reactants decrease (Negative rates) Products increase (Positive rates)

Write the rate expression for the following Rxn: $2 N_2 O \rightarrow 2 N_2 + O_2$

$\begin{aligned} \text{Rate} &= -\frac{1}{\Delta} \Delta [N_2 O] = \frac{1}{\Delta} \Delta [N_2] = \frac{\Delta [O_2]}{\Delta t} \\ &= \frac{1}{\Delta} \Delta t \\ &= \frac{1}{\Delta} \Delta t \\ &= \frac{1}{\Delta} \Delta t \end{aligned}$

The "Rate of Reaction" is

- $\frac{1}{2}$ the rate of disappearance of N₂O
- <u>OR</u> $\frac{1}{2}$ the rate of appearance of N₂
- <u>OR</u> the same as the rate of appearance of O_2

also! See how that works out?

The "Reaction Rate" would be the <u>same</u> as the rate of appearance of $O_2 = 1.63 \times 10^6$, which was the <u>same</u> as the other two parts earlier! See how that works out?

Write the rate expression for the following Rxn: $4Fe + 3O_2 \rightarrow 2Fe_2O_3$

Rate = $-1 \Delta [Fe] = -1 \Delta [O_2] = 1 \Delta [Fe_2O_3]$ 4 Δt 3 Δt 2 Δt

The "Reaction Rate" would be $-\frac{1}{3}$ the rate of disappearance of $O_2 = 3.53 \times 10^{-2}$ or ½ the rate of Fe₂O₃ appearance = 3.53 x 10^{-2} also! See how that works out?

The "Reaction Rate" would be $-\frac{1}{4}$ the rate of disappearance of Fe = 3.53 x 10⁻², which was the same as the other two parts! See how that works out?

Write the rate expression for the following Rxn: $N_2 + 3 H_2 \rightarrow 2NH_3$

Rate =
$$-\Delta [N_2]$$
 = $-1\Delta [H_2]$ = $1\Delta [NH_3]$
 Δt 3 Δt 2 Δt

"Rate of Reaction" can sometimes be given to you! Sometimes you solve for it, sometimes you are solving for a appearance/disappearance rate, could be anything!

Link to YouTube Presentation

https://youtu.be/sihC6aDsy3s